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Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in the pediatric pop-
ulation. The clinical management of ADHD is currently limited by a lack of reliable diagnostic biomarkers and inadequate therapy for a
minority of patients who do not respond to standard pharmacotherapy. There is optimism that noninvasive brain stimulation may help
toaddress these limitations.Transcranial magnetic stimulation and transcranial direct current stimulation are2 methodsof noninvasive
brain stimulation that modulate cortical excitability and brain network activity. Transcranial magnetic stimulation can be used diag-
nostically to probe cortical neurophysiology, whereas daily use of repetitive transcranial magnetic stimulation or transcranial direct
current stimulation can induce long-lasting and potentially therapeutic changes in targeted networks. In this review, we highlight
research showing the potential diagnostic and therapeutic applications of transcranial magnetic stimulation and transcranial direct
current stimulation in pediatric ADHD. We also discuss the safety and ethics of using these tools in the pediatric population.

Keywords
ADHD, pediatric, neuromodulation, transcranial magnetic stimulation, transcranial direct current stimulation

Received May 4, 2015. Received revised July 6, 2015. Accepted for publication July 10, 2015.

Attention-deficit hyperactivity disorder (ADHD) is one of the

most prevalent neurodevelopmental disorders, affecting 2%
to 7.5% of school-aged children and often persisting into adult-

hood.1-4 It is characterized by 3 core symptoms: inattention,

hyperactivity, and impulsivity.3 Despite intensive study, the

pathophysiology of ADHD remains unclear.5 The clinical man-

agement of ADHD is hindered by a lack of widely accepted

biomarkers or diagnostic tests. As such, diagnosis is typically

made using parent- and teacher-reported behavioral rating

scales in combination with a physician’s clinical impression,

without regard to the neural correlates of the individual’s

symptoms. Pharmacologic treatments for ADHD are generally

effective, and there is strong evidence that treatment improves

long-term outcomes in several social and academic domains.6

Despite the well-established clinical efficacy of available med-

ications,7,8 a minority of patients do not respond to standard

pharmacotherapy, and its use may be limited by side effects

and concerns of abuse.9-11

Noninvasive brain stimulation may help address some of the

aforementioned diagnostic and therapeutic challenges associ-

ated with the clinical management of ADHD. Several noninva-

sive brain stimulation procedures are available to physicians

and investigators, and all have in common the capacity to

modulate cortical excitability via transcranial electrical

stimulation. Of these, the 2 most common procedures are
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transcranial magnetic stimulation and transcranial direct cur-

rent stimulation, both of which are emerging as realistic clini-

cal tools.

In this review, we will briefly highlight leading theories

regarding the neural basis of ADHD. We then discuss transcra-

nial magnetic stimulation and transcranial direct current stimu-

lation, focusing on their mechanism of neuromodulation, their

safety profile in the pediatric population, and their application

in ADHD. We also briefly discuss newer neuromodulation

techniques and ethical considerations in applying noninvasive

brain stimulation to the pediatric population.

Neural Correlates of ADHD

The exact pathophysiology of ADHD has been difficult to

delineate because of complicating factors such as evolving

diagnostic criteria, phenotypic heterogeneity, frequent comor-

bidities, and environmental variables that may exacerbate or

mimic symptoms. The 3 hallmark symptoms of ADHD are

each likely to have distinct neural substrates,12,13 which may

obscure attempts to elucidate the pathophysiology from studies

that incorporate a variety of clinical presentations. Even well-

designed neuroimaging studies in ADHD struggle with a vari-

ety of potentially confounding variables, such as maturational

changes in the brain and motion artifacts from a population that

has trouble complying with prolonged MRI studies.14 Despite

these challenges, there has been some recent headway in under-

standing the neural correlates of ADHD.

One of the most influential theories for the neural basis of

ADHD has focused on deficient inhibitory control leading to

executive dysfunction,15,16 which is likely under genetic influ-

ence.17 The neuroanatomic substrate of inhibitory control is

believed to involve basal ganglia-thalamocortical circuits.18,19

Specifically, this network links the prefrontal cortex to the dor-

sal neostriatum via excitatory glutaminergic cells, the basal

ganglia to the dorsomedial thalamus via inhibitory projections,

and the thalamus back to the prefrontal cortex via excitatory

projections.20,21 Inhibitory control parallels the maturation of

this circuit, and both structural and functional neuroimaging

studies reveal differences in this circuit in association with

ADHD.22-24

A number of other large-scale networks have also been

implicated in ADHD. Impulse control deficits have been linked

to frontostriatal circuits, specifically underactivity in the ven-

trolateral prefrontal cortex, dorsolateral prefrontal cortex, and

the anterior cingulate.25-27 Anticipation of reward was shown

to correspond with underactivity in the mesolimbic circuit,

which includes the ventral striatum and orbitofrontal cor-

tex.27,28 Spatial working memory deficits are associated with

a temporoparietal circuit.29-31 As noted, the involvement of

these networks is likely to vary by ADHD subtype, which is

taken into account with recent studies.12,13

To add a layer of complexity to the imaging findings in

ADHD, abnormal patterns of brain activity may sometimes

represent compensatory changes rather than the primary under-

lying deficits. For instance, there is a compensatory and likely

adaptive increase in posterior parietal activity that accompanies

underactivation in frontostriatal regions during executive

tasks.23,27,32-34

There are also a large number of ADHD studies showing

regional volumetric changes,23,24,35-39 abnormal trajectory of

brain development,37,40 abnormal functional connectivity,41

and abnormal EEG patterns.42,43 A detailed summary of this

work is beyond the scope of this review, but several reviews are

available.12,37

Structural and functional differences in the ADHD brain are

accompanied by abnormalities of the catecholaminergic neuro-

transmitters, dopamine and norepinephrine, which are believed

to be critical in the pathophysiology of ADHD.44,45 Low levels

of dopamine in prefrontal regions are associated with increased

hyperactivity and irritability.46 Stimulant drugs used in the

treatment of ADHD increase dopamine and norepinephrine

activity in frontostriatal networks with improvement in

symptoms.47,48

While acknowledging the complexity of ADHD and the sig-

nificant limitations in our current understanding of the underly-

ing neural processes, we now turn our attention to noninvasive

brain stimulation and its potential utility in pediatric ADHD.

Transcranial Magnetic Stimulation Basics

Transcranial magnetic stimulation (TMS) is based on the prin-

ciple of electromagnetic induction: an electric current in the sti-

mulation coil produces a magnetic field, which induces an

electric current in nearby conductors, in this case, in the cere-

bral cortex. The transcranial magnetic stimulation device com-

ponents include a charging mechanism, the storage capacitor,

the thyristor, and a discharging coil. The coil design impacts

the focality of the resulting stimulation. A circular coil acti-

vates a broad area, a figure-8 coil provides relatively focal sti-

mulation of approximately 5 mm3, and an H-coil targets deeper

structures, up to 6 cm below the stimulation site.49,50 The

induced electrical current triggers action potentials in the brain

via current flowing parallel to the surface of the coil. The mag-

nitude of the stimulation is inversely related to the distance

from the coil.51

Single-Pulse Transcranial Magnetic Stimulation

The simplest stimulation paradigm for transcranial magnetic

stimulation involves applying a single, brief electromagnetic

pulse. When a transcranial magnetic stimulation pulse is

applied to the motor cortex, it can elicit observable motor

output, often in the contralateral hand.49 The motor evoked

potential resulting from the transcranial magnetic stimulation

pulse can be recorded using electromyography (EMG). When

applied to the visual cortex, a transcranial magnetic stimulation

pulse may induce a visual percept, or a phosphene. The effect

of a single transcranial magnetic stimulation pulse on other cor-

tical areas outside the motor and visual cortices can be recorded

by scalp EEG or other imaging modalities. The effects of a
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single transcranial magnetic stimulation pulse are brief, and its

safety is well established.52

Paired-Pulse Transcranial Magnetic Stimulation

Paired-pulse transcranial magnetic stimulation stimulates the

cortex with 2 pulses separated by a variable delay. The main

application of this protocol is to measure cortical inhibitory-

excitatory balance, which is described in more detail below.

Repetitive Transcranial Magnetic Stimulation

Repetitive transcranial magnetic stimulation uses a rapid

sequence of magnetic pulses to induce longer-lasting modula-

tion of the underlying cortex. Low-frequency repetitive

transcranial magnetic stimulation (1 Hz or less) generally has

an inhibitory effect on the underlying cortex, and high-

frequency stimulation will typically increase the excitability

of the underlying cortex.53 For example, when applied to the

motor cortex, 1-Hz repetitive transcranial magnetic stimulation

will depress the motor evoked potential whereas 20-Hz repeti-

tive transcranial magnetic stimulation will increase it.54,55

Theta-burst stimulation is a patterned form of repetitive tran-

scranial magnetic stimulation that requires less stimulation

time relative to the duration of effect. For example, a single ses-

sion with 3 minutes of theta-burst stimulation may modulate

the underlying cortex for 30 minutes, and the duration of effect

is extended with repeated application. Continuous theta-burst

stimulation typically has an inhibitory effect on the underlying

cortex, whereas intermittent theta-burst stimulation is excita-

tory.56 Single sessions of theta-burst stimulation in children

appear to be safe and well tolerated.57

Transcranial Magnetic Stimulation Measures
of Cortical Excitability

There are a few commonly used neurophysiological measures

to study cortical excitability, which have relevance as potential

diagnostic tests for ADHD. Motor threshold is a proxy of motor

cortex excitability,58,59 and is defined as the minimum intensity

of stimulation necessary to elicit a motor evoked potential

(>50 mV) in a target muscle 50% of the time.53

Paired-pulse transcranial magnetic stimulation protocols are

used to assess the intracortical inhibitory-excitatory balance.

Varying the interstimulus interval between 2 transcranial mag-

netic stimulation pulses leads to reliable alterations in the size

of the motor evoked potential. The 3 most commonly used

paired-pulse protocols include short-interval intracortical inhi-

bition, long-interval intracortical inhibition, and intracortical

facilitation. Short-interval intracortical inhibition uses a sub-

threshold transcranial magnetic stimulation pulse followed by

a short interstimulus interval of 1 to 5 milliseconds, then a

suprathreshold pulse.60 The first pulse may activate inhibitory

neurons that project to corticospinal neurons, thus lowering the

excitability of these corticospinal neurons for the second supra-

threshold stimulus.60 This effect appears to be mediated

primarily by GABAA.61-63 Long-interval intracortical inhibi-

tion uses 2 suprathreshold pulses at a longer interstimulus inter-

val of 50 to 100 milliseconds. GABAB has a role in mediating

the inhibitory effect of the first pulse on the second.63 Intracor-

tical facilitation uses a subthreshold pulse followed by a supra-

threshold pulse, separated by an interstimulus interval of 7 to

20 milliseconds.60 In this case, the initial pulse facilitates the

motor evoked potential of the second, possibly mediated by

NMDA-receptor excitatory neurotransmission.60

In addition to using motor output to assess cortical excitabil-

ity of the motor cortex, it is also possible to combine transcra-

nial magnetic stimulation with EEG to probe other cortical

regions.64 Transcranial magnetic stimulation pulses can elicit

a characteristic EEG response, termed a transcranial magnetic

stimulation–evoked potential. This consists of a set of peaks

and volleys in the EEG that occurs along a defined temporal

sequence. These tend to be consistent among subjects, and the

amplitude can be correlated to other measures of cortical excit-

ability, even at intensities below the motor threshold.

Interhemispheric Connectivity

Paired pulse stimulation can also be used to study interhe-

mispheric interactions using 2 transcranial magnetic stimu-

lation coils. The effects of a conditioning stimulus applied

to the motor cortex of one hemisphere can affect the motor

evoked potential elicited by transcranial magnetic stimula-

tion in the contralateral hemisphere.65 The motor evoked

potential is reduced if the conditioning stimulus in the oppo-

site hemisphere precedes the second stimulus by 7 millise-

conds or more.65 This interhemispheric inhibition appears

to occur at the level of motor cortex, and it is mediated

by transcallosal motor fibers. The ipsilateral cortical silent

period is another protocol for assessing interhemispheric

interaction. It involves a single transcranial magnetic stimu-

lation pulse to the motor cortex that induces a transient sup-

pression of voluntary tonic muscle activity in the ipsilateral

hand muscles, as assessed with EMG.65 It may be mediated

by excitatory transcallosal neurons projecting to contralat-

eral inhibitory interneurons in the homologous region of the

motor cortex, thus reflecting the functional integrity of the

transcallosal projections between motor cortices.65,66

Noninvasive Brain Stimulation in ADHD

Literature Review Method

The use of noninvasive brain stimulation in the ADHD pedia-

tric population was searched systematically using MEDLINE.

Search terms included [(ADHD) OR (comorbidities) OR (neu-

roplasticity) OR (child psychiatry) OR (child neurology) OR

(adolescents)] AND [(transcranial magnetic stimulation) OR

(transcranial direct current stimulation) OR (alternating current

stimulation) OR (transcranial random noise stimulation)].

Searches were limited to humans under age 18. References

of the articles obtained were cross-referenced. The literature

review was performed in January of 2015.
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Transcranial Magnetic Stimulation as a Diagnostic Tool
in ADHD

Behavioral ratings of hyperactivity in ADHD patients have

neurophysiological correlates in the motor cortex, which can

be probed with single-pulse and paired-pulse transcranial

magnetic stimulation protocols (Table 1). These studies have

shown an inverse correlation between short-interval intracor-

tical inhibition and hyperactivity, such that low levels of intra-

cortical inhibition are associated with greater hyperactivity.

This suggests that short-interval intracortical inhibition may

serve as a biomarker of symptom severity.16,73,76,77 Moreover,

these abnormalities in short-interval intracortical inhibition

improve with administration of methylphenidate.73 It is not

clear if these deficits in cortical inhibition are due to differ-

ences at a microscopic scale or from large-scale network

properties, or some combination. It is similarly unclear if

differences in cortical excitability in ADHD are present

throughout the cortex or limited to the motor cortex.

In addition to differences in short-interval intracortical inhi-

bition, transcallosal-mediated inhibition is also deficient in

ADHD.70-72 Both the latency and duration of the ipsilateral

silent period is prolonged in children with ADHD,70-72 with the

duration being correlated with hyperactivity and restlessness.74

The cause of abnormal transcallosal-mediated inhibition in

pediatric ADHD is not clear. The ipsilateral silent period nor-

malizes with a single dose of methylphenidate, suggesting that

abnormal motor cortex excitability may have a more important

role than structural differences in the corpus callosum. This

view is also supported by the inverse correlation of ipsilateral

silent period duration and magnitude of the short-interval intra-

cortical inhibition.54,85

Interestingly, early results of cortical excitability from

adults differ from those reported in the pediatric population.

Adults with ADHD have less hyperactivity and relatively nor-

mal inhibitory motor circuits.74 Unlike children with ADHD,

adults have a shortened ipsilateral silent period with normal

latency.74 These differences between adults and children may

relate to developmental differences in the inhibitory intracorti-

cal pathways,86 but additional study is needed. A neurophysio-

logic correlate of inattentive symptoms in ADHD has not been

identified.

Transcranial magnetic stimulation–evoked EEG potentials

have also been used to assess neurophysiology in ADHD

cohorts. The negative deflection of EEG at 100 milliseconds

after a transcranial magnetic stimulation pulse, termed the

N100, is a proxy of cortical inhibitory processes.87-91 Recent

studies have shown N100 abnormalities in association with

ADHD.91-93

Most of the research to date relevant to transcranial mag-

netic stimulation–derived neurophysiological measures in

ADHD has focused on the motor cortex. Transcranial magnetic

stimulation–evoked potentials, as described above, will allow

future studies to incorporate physiological measures of sites

beyond the motor cortex. As methodologies improve and

become easier to integrate, future studies may use transcranial

magnetic stimulation–EEG to probe the neurophysiology of

individual networks.94,95 The ultimate diagnostic utility of tran-

scranial magnetic stimulation–derived measures may require an

integration of multiple parameters to elucidate a neurophysiolo-

gical profile to which machine learning algorithms could be

applied to identify common profiles among patients with ADHD

or even subgroups within ADHD cohorts, a technique currently

being explored in neuroimaging research.13

Transcranial Magnetic Stimulation in Guiding
Pharmacotherapy in ADHD

To date, the selection of specific medications for ADHD treat-

ment is done empirically, often using trial and error to identify

the optimal medication for an individual patient. Current phar-

macotherapy is not reliably guided by any disease-specific

biomarkers or diagnostic tests, though advances in pharmaco-

genetics may prove useful with further study.96 It is possible

that neurophysiological abnormalities assessed by transcranial

magnetic stimulation could also be used for this purpose.97

Methylphenidate enhances short-interval intracortical inhibi-

tion, which has also been reported with other medications

that enhance dopaminergic neurotransmission.73,80,98-101 Given

that short-interval intracortical inhibition is correlated to hyper-

activity, and methylphenidate normalizes short-interval intra-

cortical inhibition and improves hyperactivity, it is possible

that short-interval intracortical inhibition could be used as an

objective and quantitative proxy of the therapeutic effective-

ness of methylphenidate. There are a variety of potential uses

for this information, such as identifying whether an individual

has a greater change in short-interval intracortical inhibition

with methylphenidate versus other ADHD medications, or as

a way to identify methylphenidate nonresponders without the

need for a prolonged medication trial. Short-interval intracorti-

cal inhibition could also be monitored as a way to optimize dos-

ing to adjust for increased weight or increased tolerance over

time. Short-interval intracortical inhibition could also be

tracked when investigating new medications for ADHD. Each

of these possibilities would require careful investigation prior

to any clinical use. As advances are made in the study of tran-

scranial magnetic stimulation–evoked potentials, it may be

possible to assess neurophysiological responses to medications

outside of the motor cortex as well.94

Therapeutic Transcranial Magnetic Stimulation in ADHD

An ideal therapy for ADHD should address the underlying ner-

vous system dysfunction, be associated with minimal or no

adverse effects, and be financially and practically feasible for

use in clinical practice. Pharmacologic treatments for ADHD

generally meet these goals. However, standard pharmacother-

apy is not effective for many ADHD patients, stimulants are

sometimes contraindicated, and some patients experience unto-

ward side effects, including cardiovascular, hepatic, growth, or

suicidal events.102,103 New interventions are needed to aug-

ment or provide alternatives to pharmacotherapy.

Rubio et al 787

 at COLUMBIA UNIV on June 23, 2016jcn.sagepub.comDownloaded from 

http://jcn.sagepub.com/


T
a
b

le
1
.

N
eu

ro
p
h
ys

io
lo

gi
ca

l
T

ra
n
sc

ra
n
ia

l
M

ag
n
et

ic
St

im
u
la

ti
o
n

M
ea

su
re

m
en

ts
in

C
h
ild

re
n

W
it
h

A
D

H
D

,
A

D
H

D
W

it
h

C
o
m

o
rb

id
T

o
u
re

tt
e

Sy
n
d
ro

m
e

o
r

T
ic

s,
o
r

T
o
u
re

tt
e

Sy
n
d
ro

m
e

an
d

M
et

h
yl

p
h
en

id
at

e
an

d
A

to
m

o
x
et

in
e

E
ff
ec

ts
.a

Sa
m

p
le

(m
ea

n
ag

e/
ra

n
ge

)
M

T
C

M
C

T
C

SP
IC

I
SI

C
I

LI
C

I
iS

P
-

L
iS

P
-

D
IC

F
M

P
H

A
T

X
St

u
d
y

d
es

ig
n

A
D

H
D

M
o
ll

et
al

2
0
0
0

6
7

1
8

(8
-1

2
)

Ø
#

Ø
Ø

"I
C

I
O

p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

M
o
ll

et
al

2
0
0
1

6
8

1
6

(1
2
+

1
.6

)
Ø

#
Ø

U
cl

es
et

al
2
0
0
0

6
9

2
7

(4
-1

8
)

"
G

ar
ve

y
et

al
2
0
0
5

7
0

1
2

(1
0
.7

+
1
.6

)
Ø

#
Ø

B
u
ch

m
an

n
et

al
2
0
0
3

7
1

1
3

(1
0
.8

+
1
.7

)
Ø

"
#

B
u
ch

m
an

n
et

al
2
0
0
6

7
2

2
3

(1
1
+

2
.6

)
Ø

Ø
"

#
#iS

P
-L

""
iS

P
-D

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

B
u
ch

m
an

n
et

al
2
0
0
7

7
3

1
8

(1
1
+

2
)

Ø
Ø

#
#

#
"S

IC
I

"L
IC

I
"I

C
F

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

H
o
ep

p
n
er

et
al

2
0
0
8

7
4

2
1

(2
8
.9

+
9
.2

)
Ø

Ø
Ø

#
Ø

iP
S-

L
"iP

S-
D

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

R
ic

h
te

r
et

al
2
0
0
7

7
5

1
0

(2
9
+

3
.4

)
Ø

#
Ø

G
ilb

er
t

et
al

2
0
1
1

1
6

4
9

(1
0
.5

)
#

C
as

e-
co

n
tr

o
l
st

u
d
y

A
D

H
D

/T
S/

T
ic

s
M

o
ll

et
al

2
0
0
1

6
8

1
6

(1
2
.5

+
1
.1

)
Ø

#
#

Ø
G

ilb
er

t
et

al
2
0
0
4

7
6

3
6

(1
3
-1

8
)

Ø
Ø

#
Ø

Ø
O

p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

G
ilb

er
t

et
al

2
0
0
5

7
7

2
8

(9
-4

8
)

Ø
#

G
ilb

er
t

et
al

2
0
0
7

7
8

1
4

(8
-1

6
)

#S
IC

I
Ø

IC
F

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

O
rt

h
et

al
2
0
0
9

7
9

6
(1

8
-6

8
)

"
#

"
H

ea
lt
h
y

K
ra

tz
et

al
2
0
0
9

8
0

1
4

(2
0
-4

0
)

Ø
M

T
"S

IC
I

D
o
u
b
le

-b
lin

d
,
p
la

ce
b
o
-c

o
n
tr

o
lle

d
,

cr
o
ss

o
ve

r
st

u
d
y

M
o
ll

et
al

2
0
0
3

8
1

1
2

(2
0
-4

0
)

Ø
SI

C
I

"I
C

F

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d
st

u
d
y

K
ir

sc
h
n
er

et
al

2
0
0
3

8
2

1
2

"S
IC

I
"I

C
F

P
la

ce
b
o

co
n
tr

o
lle

d
,
cr

o
ss

o
ve

r
st

u
d
y

Ili
c

et
al

2
0
0
3

8
3

8
Ø

M
T

Ø
C

SP
#S

IC
I

"I
C

F

O
p
en

,
n
o
n
-c

o
n
tr

o
lle

d

G
ilb

er
t

et
al

2
0
0
6

8
4

9
(1

9
-3

5
)

#S
IC

I
"I

C
F

#S
IC

I
"I

C
F

R
an

d
o
m

iz
ed

,
d
o
u
b
le

-b
lin

d
ed

cr
o
ss

o
ve

r
tr

ia
l

A
b
b
re

vi
at

io
n
s:

A
D

H
D

,
at

te
n
ti
o
n
-d

ef
ic

it
h
yp

er
ac

ti
vi

ty
d
is

o
rd

er
;
A

T
X

,
at

o
m

o
x
et

in
e;

C
M

C
T

,
ce

n
tr

al
m

o
to

r
co

n
d
u
ct

io
n

ti
m

e;
C

SP
,
co

rt
ic

al
si

le
n
t

p
er

io
d
;
IC

F,
in

tr
ac

o
rt

ic
al

fa
ci

lit
at

io
n
;
IC

I,
in

tr
ac

o
rt

ic
al

in
h
ib

it
io

n
;
iS

P
-D

,
ip

si
la

te
ra

l
si

le
n
t

p
er

io
d
,
d
u
ra

ti
o
n
;
iS

P
-L

,
ip

si
la

te
ra

l
si

le
n
t

p
er

io
d
,
la

te
n
cy

;
LI

C
I,

lo
n
g-

in
te

rv
al

in
tr

ac
o
rt

ic
al

in
h
ib

it
io

n
;
M

P
H

,
m

et
h
yl

p
h
en

id
at

e;
M

T
,
re

st
m

o
to

r
th

re
sh

o
ld

;
SI

C
I,

sh
o
rt

-i
n
te

rv
al

in
tr

ac
o
rt

ic
al

in
h
ib

it
io

n
.

a Sy
m

b
o
ls

:Ø
,n

o
d
iff

er
en

ce
s

b
et

w
ee

n
cl

in
ic

al
ve

rs
u
s

n
o
rm

al
gr

o
u
p
;#

,d
ec

re
as

ed
p
ar

am
et

er
va

lu
e

b
et

w
ee

n
cl

in
ic

al
ve

rs
u
s

n
o
rm

al
gr

o
u
p
;"

,i
n
cr

ea
se

d
p
ar

am
et

er
va

lu
e

b
et

w
ee

n
cl

in
ic

al
ve

rs
u
s

n
o
rm

al
gr

o
u
p
.I

n
M

P
H

an
d

A
T

X
co

lu
m

n
s:
",

en
h
an

ce
d

p
ar

am
et

er
va

lu
e

af
te

r
th

e
d
ru

g
in

ta
ke

;
#,

d
im

in
is

h
ed

p
ar

am
et

er
va

lu
e

af
te

r
th

e
d
ru

g
in

ta
ke

.

788

 at COLUMBIA UNIV on June 23, 2016jcn.sagepub.comDownloaded from 

http://jcn.sagepub.com/


Repetitive transcranial magnetic stimulation, when used on

a daily basis, can induce long-lasting changes in the excitability

of the stimulated site. These functional changes can be lever-

aged for therapeutic effect, as has been shown for medication-

refractory depression in adults.104 Although there are no current

US Food and Drug Administration (FDA)–approved therapeutic

uses of transcranial magnetic stimulation in the pediatric popu-

lation, a multicenter trial is currently underway investigating its

role in treating medication-refractory depression.105,106 With

regards to ADHD, there have only been a small number of pilot

trials exploring the use of therapeutic transcranial magnetic

stimulation in the pediatric population.

In 2012, Weaver et al performed a pilot trial of 9 adolescents

and young adults, aged 15 to 20 years, using 10-Hz repetitive

transcranial magnetic stimulation to the right dorsolateral pre-

frontal cortex.107 Subjects underwent 10 sessions over 2 weeks,

and each subject was crossed over to receive sham. The objec-

tive of the study was to assess safety and the conclusion was

that repetitive transcranial magnetic stimulation was safe in

this cohort, but the study was underpowered to show efficacy.

Although the authors reported an improvement in core ADHD

symptoms in the treatment group, the effect did not differ sig-

nificantly from the sham condition.

There have been a few studies of therapeutic repetitive tran-

scranial magnetic stimulation in adults with ADHD, reviewed

in Zaman.108 In 2010, Bloch et al performed a double-blind,

randomized, sham controlled crossover pilot study with posi-

tive effects in 13 patients.109 Niederhofer reported improved

ADHD symptoms in a case study that involved motor cortex

stimulation using 1-Hz repetitive transcranial magnetic stimu-

lation at 1200 pulses per day for 5 days.110

To date, however, there are no published large, randomized,

sham-controlled trials of therapeutic repetitive transcranial

magnetic stimulation in ADHD, though several trials are

ongoing (see clinicaltrials.gov for details). Moreover, the opti-

mal target, frequency, and duration are all unknown. It is likely

that the target will vary depending on the symptom being

treated, as studies have shown distinct neural substrates for dis-

tinct ADHD subtypes.12,13

Safety in Pediatric Transcranial Magnetic Stimulation

The majority of the safety data in transcranial magnetic

stimulation is derived from adults. Common side effects of

transcranial magnetic stimulation include headache and scalp

discomfort, which is experienced by up to 40% of partici-

pants.111 Rare, but more concerning, effects include hearing

loss112,113 or the induction of a seizure with repetitive transcra-

nial magnetic stimulation.52 The risk of hearing loss can be

minimized by using earplugs, and the risk of seizure is esti-

mated at less than 1 in 10 000 when appropriate safety guide-

lines are adhered to.52,114

Transcranial magnetic stimulation has been used in more

than 800 normal children and more than 300 neurologically

abnormal children, with a good tolerability and safety pro-

file.115,116 No change in auditory function has been reported

in the pediatric population to date.115 Single- or paired-pulse

transcranial magnetic stimulation has not been shown to cause

seizures in children, including those with epilepsy or with con-

ditions like cerebral palsy that are associated with increased

risk of seizures.111,117-123 One case of repetitive transcranial

magnetic stimulation–induced seizure was reported in an ado-

lescent patient being treated for depression,124 though other

risk factors for seizure were also present, including alcohol use

the night before the induced seizure.105 In 2009, a consensus

conference issued recommendations for the safe use of tran-

scranial magnetic stimulation in the pediatric population. They

concluded that single-pulse and paired-pulse transcranial mag-

netic stimulation was safe for children 2 years and older. In the

absence of an appreciable volume of data on the potential for

adverse effects with repetitive transcranial magnetic stimula-

tion, they recommended that children should not be used as

subjects for repetitive transcranial magnetic stimulation with-

out compelling clinical reasons, such as the treatment of partic-

ular psychiatric conditions.52

Transcranial Direct Current Stimulation in ADHD

Transcranial direct current stimulation is a noninvasive brain

stimulation technique that has received a surge of interest in the

last decade. With transcranial direct current stimulation, a low-

amplitude direct current (0.5-2 mA) is applied to the scalp via

electrodes. Electric current flows from the negatively charged

cathode to the positively charged anode, penetrating the skull

and modifying neuronal transmembrane potentials in the cur-

rent path. The effect is to modulate the excitability of a given

region, but unlike transcranial magnetic stimulation, transcra-

nial direct current stimulation does not deliver suprathreshold

currents to induce action potentials.125-128 The cortex underly-

ing the anode typically becomes more excitable whereas the

cathode site has decreased excitability. The efficacy of tran-

scranial direct current stimulation depends on the location,

intensity, and duration of the current applied to the brain, which

is affected by electrode size and the orientation of the electric

field.128-130 Transcranial direct current stimulation is a much

more diffuse form of stimulation than transcranial magnetic sti-

mulation, though smaller electrodes and multielectrode arrays

can be used to improve the spatial resolution.

Enduring changes in brain function after transcranial direct

current stimulation are documented in the same manner as

transcranial magnetic stimulation. When several sessions are

applied, the effects can last for several weeks.131,132 Because

transcranial direct current stimulation is subthreshold for indu-

cing action potentials, the greatest therapeutic benefit may be

realized by coupling transcranial direct current stimulation ses-

sions with cognitive training. This effect has been leveraged to

induce therapeutic effects in disorders such as depression and

pain.133-136

An ongoing study is investigating the use of transcranial

direct current stimulation in adult patients with ADHD, which

uses anodal transcranial direct current stimulation over the left

dorsolateral prefrontal cortex at 1 mA.137 The aim of this
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parallel, randomized, double-blind, sham-controlled trial is to

study the modulation of inhibitory control in this population.

Although the results of transcranial direct current stimulation

in ADHD are not yet available there is a burgeoning literature

suggesting that transcranial direct current stimulation may be

used to improve cognitive performance. These studies have

shown that transcranial direct current stimulation can improve

behavioral inhibition, memory, and attention in healthy

subjects,138,139 and these findings extend to clinical popula-

tions.137,140 There is reason to be optimistic that similar stimu-

lation paradigms may have a beneficial effect for ADHD

patients, though it will be critical that future studies be suffi-

ciently powered and include a sham-controlled experimental

design.

If transcranial direct current stimulation is effective for cer-

tain symptoms of ADHD, it may offer many advantages over

repetitive transcranial magnetic stimulation as a therapy. For

example, the stimulators are relatively inexpensive compared

to transcranial magnetic stimulation equipment, and applica-

tion requires less cooperation from the patient relative to

repetitive transcranial magnetic stimulation, which may be

important for hyperactive children. Moreover, the safety pro-

file of transcranial direct current stimulation is excellent and

the main recognized side effects include an itching sensation

and skin redness under the electrode.116,129

Newer Noninvasive Brain Stimulation Tools

Two new promising neuromodulation techniques include tran-

scranial alternating current stimulation and transcranial random

noise stimulation (tRNS). Transcranial alternating current sti-

mulation is similar to transcranial direct current stimulation,

but the current alternates at a specific frequency. This can alter

the oscillatory frequencies in regions being stimulated. A

recent study of 12 children with ADHD showed that 0.75-Hz

transcranial alternating current stimulation during slow-wave

sleep improved declarative memory consolidation to normal

levels.140 Given prior research highlighting abnormal oscil-

latory activity in the ADHD brain, such as an elevated

theta-to-beta ratio in frontocentral leads,141 it is possible that

normalizing these patterns via transcranial alternating cur-

rent stimulation may be therapeutic. Transcranial random

noise stimulation is similar to transcranial alternating current

stimulation, except instead of a defined frequency the alternating

current is random, resembling noise.142 It may act by introducing

noise into a system to increase the signal-to-noise ratio.143

Although transcranial random noise stimulation has not been

used in ADHD to date, it has improved cognitive parameters

for healthy controls.144

Ethics of Noninvasive Brain Stimulation in
Pediatric ADHD

There are major questions raised by the prospect of inducing

functional changes in a child’s brain through exogenous stimu-

lation. This includes, but is not limited to, possible long-term

effects, access to this technology, and cognitive domain perfor-

mance trade-offs. In fact, there is evidence that while therapeu-

tic brain stimulation can result in benefits in certain domains,

others can become impaired.145,146 Given the availability of

transcranial electrical stimulation devices and direct-to-

consumer marketing, one major ethical concern is the prolifera-

tion of nonmedical use. If a company markets transcranial

direct current stimulation equipment using nonmedical terms

(eg, to enhance focus) it may bypass the regulatory processes

in place for medical devices, potentially making transcranial

stimulation available to consumers prior to carefully monitored

clinical trials that are needed to rigorously establish the optimal

parameters of use, efficacy and side effect profile. In addition,

there is no guarantee that safety data derived from adult trials

will carry-over to the pediatric population. As such, we must

proceed forward with great caution and foresight. For excellent

discussions of the ethics of pediatric brain stimulation, see

Davis147 and Maslen.148

Conclusion

This review highlights studies that build early support for the

cautious extension of research into the diagnostic and therapeu-

tic use of noninvasive brain stimulation in pediatric ADHD.

While the current evidence is admittedly limited, there is rea-

son to be optimistic. With respect to therapy, the developing

brain is believed to be more plastic than its adult counterpart,

and thus is likely to be more easily influenced by neuromodula-

tion. Supportive of this concept, one of the predictors of better

response to repetitive transcranial magnetic stimulation therapy

in adult depression is younger age,149,150 and early results of

therapeutic neuromodulation in the pediatric population are

encouraging. However, increased plasticity in the pediatric

brain may also correspond to increased vulnerability to unin-

tended changes induced by neuromodulation. Researchers must

proceed cautiously with a high level of vigilance for side effects.

Exactly how noninvasive brain stimulation can be optimally

integrated with current clinical management of ADHD will

require years of intensive study, but the pervasiveness of ADHD

and the need for improved management should make this endea-

vor a high priority.
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